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i. Models of autowave propagation of chemical reactions in homogeneous media were 
investigated in [i~6]. It is shown in [6] that an immobile front of a polymerization reac- 
tion (accompanied by a sharp increase in the viscosity) in a moving medium has a strongly 
distorted (singular) form. In this connection it is of interest to study autowave propa- 
gation of a polymerization reaction in dispersed media, consisting of a carrying, low- 
viscosity phase and particles of a dispersed phase, in which the polymerization reaction 
occurs. In this case an increase in the viscosity of the material in the particles in the 
course of the reaction will have no effect on the hydrodynamic flow of the medium as a whole 
and the reaction front can be regarded as being flat. The results of the study are useful 
for analysis of not only polymerization processes, but also any other exothermal chemical 
reactions, satisfying the conditions of the problem. A simplified model of the propagation 
of a combustion wave in a chemically inert medium, containing gas bubbles in which com- 
bustion occurs, was proposed in [7, 8]. In [9, i0] this model is used to analyze a poly- 
merization wave in a liquid medium with liquid particles of a monomer distributed in it. 
The model studied in [7-10], however, has significant drawbacks. The main drawback is that 
the asymptotically decaying chemical reaction in the trailing edge of the wave is neglec- 
ted. This reaction is important in any chemical-technological processes. According to 
the boundary conditions employed in [7-10], the temperature profiles in continuous and dis- 
persed phases have discontinuous derivatives, and the proposed qualitative form of the pro- 
files was not confirmed either computationally or by means or qualitative studies of dif- 
ferential equations. 

In this paper it is shown that taking into account the decaying chemical reaction in 
the trailing edge of the wave and using boundary conditions corresponding to a smooth tem- 
perature profile in a continuous medium leads to fundamentally new qualitative and quan- 
titative results. In particular, it is found that for the parameters adopted in [7-10] 
for the problem a stationary wave solution does not exist. The conditions for existence 
of waves of chemical reaction in dispersed media are found, and the velocities of the waves 
and their structure are calculated. It is shown that waves in dispersed media can have 
two qualitatively different types of structures. 

2. We shall study the one-dimensional, steady-state motion of a continuous medium, 
containing particles of a dispersed phase, in which an exothermal chemical reaction can 
occur. It is assumed that the sizes of the particles and their volume content are low 
enough that the velocity of the carrying phase equals that of the particles and the parti- 
cles do not collide with one another, transfer of the heat of reaction from particle to 
particle occurs by means of heat conduction in the carrying phase, the chemical reaction 
is quite active, and a stationary self-maintained wave forms in the dispersed medium. 

We shall write down the equation for the conservation of energy and mass in terms of 
coordinates fixed in the wave. The energy equation for the dispersed phase is the equation 
for the temperature T I in a separate particle (regarded as an ideal mixing reactor), moving 
along the axis of the channel x with the velocity of the wave u: 

dT~ 
9 , c , u ~  = thQu,(C ' 7" O _ v  __ Tz). (2.1) 

Here Pi and c I are the density and specific heat capacity of the particle material; Q is 
the specific heat of reaction; w is the reaction rate; S and v are the surface and volume 
of the particles; e is the coefficient of heat transfer at the surface of the particle; 
T 2 is the temperature of the continuous medium; and, C is the concentration (mass fraction) 
of the reagent in the particle. 
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The equations for the concentration of the reagent in the particle and the energy for 

the continuous phase have the form 

dC 
U ~ = - -  w(C, T1); ( 2 . 2 )  

d2T2 dT,, aS 
(t - -  (~) ~ , 2 7  - -  (J - -  ~) p2c~ ~ + q~ 7 (V, - -  T2) - -  0, ( 2 . 3 )  

where %0 is the volume content of the particles; ~2, P2, and c 2 are the thermal conductivity, 
density, and specific heat capacity of the continuous medium.* 

Substituting (2.1) and (2.2) into (2.3) and integrating the equation obtained from 
the instantaneous section to +~ with T l = T 2 = Tm, C = 0, dT/dx = 0 and x = +~ we obtain 

dTz 1 ~ U O l C l ( T I _ _ T ~ )  i ~__~91QuC. (2.4) ~2"-~x = up~c'2 (Tin - -  T2) + + 

From Eq. (2.4) with T I = T a = To, C = C0, dTa/dx = 0 and x = -~ we find a relation between 
the starting and final parameters of the system: 

(p 
~)2C2 (Tin --  To) JC ~ ~)1C1 (Tin - -  To) - -  ~ p l0Co = 0. ( 2 . 5 )  

For small particles (we assume that they are spherical and have a radius r) the ratio aS/v = 
3X2/r 2, Nu = a2r/% 2 = 2. We introduce dimensionless variables and system parameters: 

3x~2 Tcl Eel ( r 11/2 O]Cl ur % = 2, 0 = - -  7 lJ~ P2c ~ t - -  ~ U= 
u~1%~ (2 ' = - ~ '  ~'1% 'P ' k~ - ~ / ~ " 

Then Eqs. (2.1), (2.2), and (2.4) assume the form 

dOJd  X = r - -  Orn) + U2(01 - -  Ore) -[- U~C; 

dOi/d ~ = W(C,  01) - -  (01 - -  0~); 

dC/d% = - - W ( C ,  O1) 

(2.6) 

(2.7) 

(2.8) 

(W is the dimensionless reaction rate). 

3. The system (2.6)-(2.8), with the function w given, is autonomous; its solutions 
can be represented by trajectories in a three-dimensional phase space (Of, 02, C). We shall 
assume that the chemical reaction is of first order (in the case of polymerization this 

corresponds to thermal polymerization): 

w = koC exp ( - -E /RT1) .  

H e r e  k 0 i s  t h e  r a t e  c o n s t a n t  o f  t h e  r e a c t i o n ;  E i s  t h e  a c t i v a t i o n  e n e r g y ;  a n d ,  R i s  t h e  
u n i v e r s a l  g a s  c o n s t a n t .  

I n  a c c o r d a n c e  w i t h  t h e  w e l l - k n o w n  p r i n c i p l e  o f  t r u n c a t i n g  t h e  k i n e t i c  f u n c t i o n  [11 ]  
i n  ( 2 . 7 )  a n d  ( 2 . 8 )  we s h a l l  a s s u m e  t h a t  t h e  f u n c t i o n  

w = kc  ~ p  ( - ~ / o , )  (k = ~ k o ~ l ( ~ ) )  ( 3 . 1 )  

equals zero in a neighborhood of the starting values of the temperature O 0. For the condi- 
tions adopted, taking into account (2.5), the system (2.6)-(2.8) in the part of the phase 
space 0 2 e O0, O I ~ O 0, C e C O has two singular points - the starting position of equilib- 
rium (01 = O0, 0 2 = O 0, C = C o ) and the final position of equilibrium (01 = O m, 0 2 = O m, 
C = 0). The characteristic numbers of the starting position of equilibrium are 

2 --+ ~- + U ~ ( r  , 

*The coefficient 1 - ~ in=(2.3) in front of the second derivative of T 2 was omitted in 
[7-10], while it was included in front of the first derivative of T 2. 
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i.e., 

rium, 

the equilibrium position is of the saddle type and lies in the plane C = C O . 

Linearizing the system (2.6)-(2.8) in a neighborhood of the final position of equilib- 
from the discriminant 

~U ~ -  %~, U ~, U ~ 

l, - - l - -  ~m, k e x p ( - - ~ )  
~ 0 

(3.3) 

we find Iml = 10z > 0, Im2 = 102 < 0, Im3 = -k exp (-~/O m) < 0, i.e., the final position 

of equilibrium, based on the classification of Sideriadis [12], is a stable saddle. 

The possibility of a transition from the starting position of equilibrium to the final 
position is determined by the characteristic directions at the singular points and the posi- 
tion of three zero surfaces in phase space: C = @m - @I + (~ -@2)~, C = k-Z(O1 -@2)" 

exp (~/el), C = 0, at the points of which dOf/d X = 0, d@i/d X = 0, dC/d X = 0, respectively. 

The characteristic directions at the singular points are found by calculating the deri- 
vatives d@2/dO1, dC/d@ I there. Dividing (2.8) by (2.7) and evaluating the indefinite form 
by l'Hospital's method at the final singular point we find 

I t  f o l l o w s  f rom ( 3 . 4 )  t h a t  one  o f  t h e  two v a l u e s  o f  t h e  d e r i v a t i v e  (dC/d01)  m e q u a l s  z e r o .  
I t  can  be shown, by p e r f o r m i n g  a n a l o g o u s  t r a n s f o r m a t i o n s ,  t h a t  i t  c o r r e s p o n d s  t o  two v a l u e s  
o f  t h e  d e r i v a t i v e :  

- -  ! § U 2 

We obtain the second value of the derivative (dC/d@1) m from (3.4) and the equation 

found after evaluating the indeterminate form of the derivative d@a/d@ I at the final point 
with (dC/d@l) m = 0. Substituting (3.6) into (3.4) we obtain 

~o1~ ,  = [ -  t + ( k u - ~  -'/~ + r (k~-'/~ - 1)1 (3. 7) 

Thus at the final singular point there exist three characteristic directions, two of which 
lie in the plane C = 0. 

793 



a b 

I 0 3 I 0 3 x 

2 2 

Fig. 2 

By performing a similar analysis for the starting singular point it can be shown that 
at this point there are two characteristic directions, lying in the plane C = 0, and in 
addition 

(dO/d01)ol,2 = (dO2/dOl)mL~ ( 3 . 8 )  

(thenumbers of the characteristic directions correspond to the numbers of the characteris- 
tic values). 

It follows from (2.6)-(2.8) and (3.1) that the trajectories exhibit distinctive behav- 
ior in a neighborhood of the starting and final points. It consists of the fact that the 
plane C = C o , in which the characteristic directions of the starting singular point lie, 
is not integral, while the plane C = 0, in which the characteristic directions of the final 
singular point lie, is integral. This means that the solutions lying in the plane C = 0 
in a neighborhood of the final singular point lie wholly in this plane (i.e., there are 
no parts unique to them that lie in the open part of the phase space). On the other hand, 
the trajectories lying in the plane C = 0 in a neighborhood of the starting singular point 
lie mostly in the open phase space. It follows from this that the wave solution of inter- 
est to us can be found from the starting singular point along the characteristic direction 
i and by entering the final position of equilibrium only along the characteristic direction 
3, making a finite angle with the plane C = 0. The characteristic directions i and 2 of 
the final singular point are not related with the wave solution. Neglecting the chemical 
reaction in the final part of the wave, as done in [7-10], corresponds to neglecting the 
characteristic direction 3 at the final singular point, i.e., it essentially leads to throw- 
ing away the wave solution sought. 

As one can see from (3.6) the slope angle of the projection of the characteristic 
direction 3 on the plane C = 0 can have a different sign depending on the parameters 

dO-"~l/m:~ > 0 for ~ < k -1 exp ~ - -  

dOl/m3 < 0  for ~>k-leXP~mm , (3 9b) 

i.e., the wave solution can enter the final singular point in two different ways. To rep- 
resent them we shall examine the arrangement of the zero surfaces dO1/dx = 0, dOa/dx = 0 
in the phase space (@i ~ O0, @2 e 0o, C ! Co). The zero surface dO1/dx = 0 is a plane in- 
tersecting the three coordinate planes. The zero surface dO2/dx = 0 is a surface passing 
through the straight line @l = @2, C = 0 (Fig. i). The arrows on the zero surfaces in Fig. 
i mark the regions where the corresponding variables increase. The wave solution emanates 
from the point C = C o , 01 = 0 2 = 0 o along the characteristic direction 1, lying above the 
plane do1/dx = 0, and enters the point C = 0, @i = @2 = Om, either always remaining between 
the surfaces dO1/dx = dO2/dx = 0 (solution S I) or first crossing the surface dO1/dx = 0 
(solution $2). In both cases the solutions cross the plane 81 = O= and as the final singu- 
lar point is approached 81 > 8 2 . In the first case, in a neighborhood of the final singular 
point the temperatures of the continuous and dispersed phases increase [the values of the 
parameters satisfy the inequality (3.9a)]; in the second case the temperature of the contin- 
uous phase increases while that of the dispersed phase decreases [the value of the para~ 
meters satisfy the inequality (3.9b)]. 

Graphs of the change in the parameters corresponding to the solutions S I and S 2 ar% 
presented in Figs. 2a and b (solid lines), respectively. The remaining solutions of the 
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system (2.6)-(2.8) and (3.1), evidently, are of no interest. The existence of a solution 
of the type S 2 was proposed in [7] based on physical considerations. It does exist, how- 
ever, as follows from the foregoing discussion, when the chemical reaction in a neighbor- 
hood of the final singular point is taken into account. 

4. To obtain analytical expressions for calculating the structure of the wave and 
its velocity we shall separate three zones in the wave: i) no chemical reaction, heat ex- 
change occurs between phases, and heat transfer occurs by means of heat conduction along 
the continuous medium; 2) the rate of the chemical reaction greatly exceeds all transport 
processes, the temperature of the particles in it increases sharply and the concentration 
of reagents in them decreases, and we assume that the thickness of the wave equals zero 
(the particles are significantly smaller than the characteristic dimensions of the channel 
and the width of the wave); 3) we assume that the solution linearized in a neighborhood 
of the singular point of the system (2.6)-(2.8) and (3.1) is valid, chemical reaction and 
heat exchange between the phases as well as heat transfer by means of heat conduction occur 
simultaneously (dashed lines in Fig. 2). 

Integrating the equations (2.6) and (2.7) in the first zone we find 

@t: = B exp (Lol%) +Om - -  Co(~) + 1)-1; (4.1) 

021= B(s t)exp(s q- O r e - -  C0(x~ @ t)-1;  ( 4 . 2 )  

t h e  s e c o n d  i n d e x  f o r  t h e  t e m p e r a t u r e  c o r r e s p o n d s  t o  t h e  number  o f  t h e  z o n e .  I t  f o l l o w s  
f r o m  ( 2 . 7 )  and  ( 2 . 8 )  t h a t  i n  z o n e  2 t h e  t e m p e r a t u r e  o f  t h e  p a r t i c l e s  and  t h e  c o n c e n t r a t i o n  
a r e  r e l a t e d  by  t h e  e q u a t i o n  

0'~ = - - C 2 §  ( 4 . 3 )  

I n  t h e  z o n e  3 t h e  s y s t e m  ( 2 . 6 ) - ( 2 . 8 ) ,  ( 3 . 1 )  a f t e r  l i n e a r i z a t i o n  h a s  t h e  s o l u t i o n  

k(kU-~ + ~ ) - - I  exp (--  ~%); ( 4 . 4 ~  
Ola = @,,~ + D (1 -- k) (kU -~ + ~2) ~- 1 

C a = D exp (--)9~); (4.5) 

(~.2a = O m  - -  D exp (-- ~%) 
(~ - ~) (~u -~ + ~) + (4.6) 
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In deriving Eqs. (4.1)-(4.6) the boundary conditions at x = • = were employed; A, B, and 

D are constants of integration; 

= l~m31 = k exp ( - y / O r e ) .  ( 4 . 7 )  

We shall employ the boundary conditions for joining the solutions at the boundaries 
of the zones, fixing the origin of coordinates in the zone 2 (we call it the reaction 
front): 

011(~ = O) = 0120, 921(~ = O) = 022 , C3( ~ = O) = Ch, 021( ~ = O) = 

= o ~ ( z  = o), oi~(~ = o) = 0 1 ~ .  ( 4 . 8 )  

Substituting (4.8) into (4.1)-(4.6) we obtain 

B -F O,~ - -  Co(* -I- I) - I  = 01.,o; 

B(~o~ + 1) + om - Co(r + 1) -1 = o~2; 

D = Ch; 

B(~o~ -{- t )  - -  Co(~ + 1) -1 = - - D  [( l  - -  ~.)(~U -2 -]- r  -~ 1 ]-1; 

O , ,  @ D [ ~ ( ~ U  -~ @ ~P) - -  1][ (1  - -  ~)(LU -2 @ ~)  @ 1]-1 = Ox2h. 

Here, as follows from (4.3), 

( 4 . 9 )  

( 4 . 1 o )  

( 4 . 1 1 )  

( 4 . 1 2 )  

( 4 . 1 3 )  

6)v,0 ---- A -- O0; (4.14) 

012 ~ = A -- C~. (4.15) 

We shall assume that at the start of the zone 2 the heat flux released in the chemi- 
cal reaction equals the heat flux flowing to the particles from the continuous phase: 

Ir exp (--?/Ox,oo) = 0,,2 - -  O,2o, ( 4 . 1 6 )  

while at the end of zone 2 the heat flux released in the chemical reaction equals the heat 
flux flowing from the particles into the continuous phase: 

kCh exp  ( - -? /01=h)  = 012k - -  022. ( 4 . 1 7 )  
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The equations (3.2), (4.7), and (4.9)-(4.17) contain the parameters U, k, B, Om, Co, 
~, Of 20, A01, 022, D, C k, ~, O12 k, A, ~, three of which (y, k, ~) are determined by the 
thermophysical and kinetic properties of the system under study and can be regarded as 
given. Therefore it is sufficient to give one more parameter so that the system of equa- 
tions can be solved. For example, this parameter could be the final temperature 6) m. After 
the system is solved with the given O m the dimensionless velocity of the wave U is deter- 
mined. An important property of the model developed is that the condition that the tempera- 
ture of the continuous phase before the front is equal to the temperature after the front 
(4.12) and the ratios of the temperatures of the particles and concentrations on the front 
(4.9), (4.11), and (4.13)-(4.15) imply that the derivatives of the temperature of the con- 
tinuous phase with respect to the coordinate X vanish on both sides of the front. 

Indeed, eliminating the parameters A, Co, O120, Oz2k from (4.9), (4.11)-(4.15) we ob- 
tain the relation 

B = C~)~(lo, + t)-1[(I _ ~)(~U-2 +. ~)~_ t]-1,  ( 4 . 1 8 )  

wh ich ,  as  one  can e a s i l y  v e r i f y  by d i f f e r e n t i a t i n g  Eq. ( 4 . 2 )  and ( 4 . 6 ) ,  shows t h a t  t h e  
derivatives of the temperature of the continuous phase with respect to X on both sides of 
the front are equal. Thus the temperature profile in the continuous phase, obtained with 
the help of this model, is smooth. 

Eliminating systematically the unknown parameters from (4.7) and (4.9)-(4.17) we obtain 
an equation for calculating the velocity of the wave: 

Om I - -  V V 
-~- = hq-~-~ + l n ~ '  (4.19) 

where 

~'ol (2" + u2~l~) + U~ (i + ~) 
V = - -  

~ ~o~ (~ + r + * "U~) + 0 + , )  (~ + *u  2) ; 

X01 (r  + 1) - 1  ~ ~- *U 2 
w~ = u~ + (~0~ + t) (~ + ~y~);  w~ = (~ + u~ , )  (1 - ~) + u ~ " 

E q u a t i o n  ( 4 . 1 9 )  can  be s o l v e d  g r a p h i c a l l y  b a s e d  on t h e  i n t e r s e c t i o n  o f  t h e  r i g h t  s i d e  o f  
t h i s  e q u a t i o n  w i t h  t h e  s t r a i g h t  l i n e  Om/Y as  a f u n c t i o n  o f  U.* A f t e r  U has  been  d e t e r m i n e d  
~01 i s  c a l c u l a t e d  f rom ( 3 . 2 ) .  From ( 4 . 7 )  and ( 4 . 1 6 )  we o b t a i n  

~ (* + ~) u~ + (~o~ + ~) (~ + u~P) 
C~ = t - -  "~ (0 m ]l] U)1)--1 U 2 __ )~ + (/~ol + i) ()~ ~- U2~q )) 

and the constants of integration are 

(4.20) 

D =  C o ~ +I+%~162 u 2 + ( ~ + U 2 r  ; 
~p+i ~ ~- ~7-U~(~0:~i ) (4.21) 

B= C~ ~ (4.22) 
Ip -~- J_ U 2 ,~_ (%01 + ~) (~ -~- U2~)" 

Once U, 101, Co, D, B are known the profile of the temperatures and concentrations in the 
wave can be calculated from (4.1), (4.2), and (4.4)-(4.6). 

5. The determination of the velocity of the wave reduces to constructing the right 
side of Eq. (4.19) (denoting it by Y) as a function of U, which depends on the parameters 

and ~. The function Y(U) was calculated for a wide range of parameters (@ = 10 -2 -102 , 
= 10 -4 -i0). Figure 3a shows the results of the calculation, giving an idea of the char- 

acter of the dependence Y(U; ~, ~). It has a horizontal asymptote in the limit �9 ~ ~, 
equal to Y= = [i - (X~)-x]/[in~ - in (@ - ~X + i)], and crosses the ordinate axis at 
Y0 = -in-i (i - ~). For large values of ~(~ m i) the dependence Y becomes a straight line, 

*We note that the first term on the right side of (4.19) is indefinite -- the numerator and 
denominator vanish at U 2 = 12(i -- l~) -I. 
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TABLE 2 

0,01 
l 

r, m 

0,318.I0 -a 
3,t8. i0 -;~ 

ltt I 11:! 

m/sec 

0,0464 
0,0(133 

i,23.10 -t 
3,84. iO -t 

C,,~ C..2 K 

0,233 t 0,021 I 408,05 
0,25 0,233 401 

494 

408, I 

parallel to the abscissa axis in virtually the entire domain of U. For values of X close 
to unity Y lies in a neighborhood of the abscissa axis and for X = 1 passes through the 
origin (Fig. 3b); it has a maximum in the positive and a minimum in the negative quadrant 
of the half-plane (Y, U). Decreasing X causes a stronger curvature of the dependence Y(U), 
while for % > 1 the function Y vanishes for small and large U. Since the ratio On/y = 
TmR/E = $ for most substances varies in the range from several hundredths to several tenths, 
the points of intersection of Y and the straight line Gm/~ sought practically coincide (in 
the scale of Fig 3a) with the points of intersection of the function Y and the abscissa 
axis. It follows from Fig. 3a that there can be 2, 3 (X ~ i) or no (~ m i) such intersec- 
tions. The parameter ~ is the ratio of the heat capacities of the masses of the continuous 
phase and the particles contained per unit mass of the mixture. It is obvious that if the 
heat capacity of the mass of continuous phase is much greater than the heat capacity of 
the mass of particles, then theheat of reaction released in the particles will be absorbed 
by the continuous phase without any appreciable changes in the temperature of the continu- 
ous phase, and under these conditions the chemical reaction cannot propagate through the 
medium. 

The calculations were performed for three mixtures of substances: water-styrene (p = 
105 N/m z, T m = 503 K, r = 1.3"10 -4 m, ~ = 0.2); air-styrene (p = l0 s N/m 2, T m = 503 K); 

liquid hexane-oxygen (p = 5.106 N/m 2, Tm = 687 K, r = i0 -4, m, ~ = 0.064). The values 
of the thermophysical and kinetic parameters of these mixtures are presented in Table 1 
[8, 13]. 

For the styrene-water mixture we obtained for the conditions chosen the following val- 
ues of the determining parameters: ~ = i0, % = 10 -4 . A graph of the function Y, in this 
case, is a line that for very large values of Y (Y~ = 10,481, Y0 = 9,984) lies close to a 
straight line parallel to the U-axis. There are no wave solutions for these conditions 
and conditions close to them, namely, they correspond to real conditions under which the 
process of polymerization of styrene in water is conducted. 

For a system of oxygen bubbles in liquid hexane ~ = 227, X = 0.0056. Wave solutions 
likewise do not exist for these values of the parameters. The main reason for the non- 
existence of wave solutions in these cases is that the value of ~ is large; this is at- 
tributable primarily to the high density of the continuous phase. 

The parameter ~ decreases by several orders of magnitude, if the reaction of thermal 
polymerization of styrene is conducted in a gas phase. Thus even with a comparatively low 
volume content of styrene droplets in air ~ = 0.046, ~ = 0.01. For a radius of the drops 

r = 0.318"10 -~ m X = 0.01 and, according to Fig. 3a, there exist two wave solutions with 
velocities u I = 0.0464 m/sec and u 2 = 1.23-10 -4 m/sec. For r = 3.18-i0 -s m % = 1 and, ac- 
cording to Fig. 3, there exist three wave solutions with u I = 0.0633 m/sec, u 2 = 3.84-10 -4 
m/sec, and u 3 = 1.23.10 -5 m/sec. The calculation showed that the third wave solution 
is physically meaningless, since the starting concentration of monomer in the droplets cor- 
responding to it C o > i. 

Graphs of the structure of the wave corresponding to the wave solutions u I and u 2 ob- 
tained are shown in Figs. 4 and 5, respectively. It follows from the calculation that for 
every solution pair ul, z there exist starting parameters C o and T o that differ from the 
values of these parameters for other solutions (Table 2); in addition C o < i. The latter 
means that the liquid in the starting state is a mixture of a monomer with an inert sub- 
stance, for example, polystyrene. Of the four wave solutions only one u2 with r = 3.18-10 -3 
m is of the type 2; the others are of the type i. The width of the wave ul equals several 
tens of meters, while the width of the wave u z is smaller and varies from 0.I to 2 m. In 
both cases the width of the wave is many times greater than the diameter of the particles. 
Solutions of the type 1 have a temperature profile that is characteristic for spontaneous 
combustion regimes. There is virtually no discontinuity in the temperature of the particles 
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in the zone 2 of these solutions. For solutions of the type 2 there is a significant dis- 
continuity in the temperature of particles in zone 2. They correspond to the combustion 
regime. 

We shall evaluate the validity of the condition, adopted in Sec. 2, for the tempera- 
ture to be independent of the instantaneous radius in a particle for the wave solutions 
obtained (the condition of an ideal mixing reactor). For this we compare the characteris- 
tic time for the release of heat from a particle to the carrying phase t I = 2rpici/(6~) 
with the characteristic time for the transfer of heat by means of heat conduction within 
the particle t 2 = plr2cl/(~ll) [14]. Taking into account the fact that the value of the 
coefficient of heat transfer ~ equals exactly 12/r for particles that are at rest relative 
to the carrying phase (see, e.g., [14, 15] for the system styrene-air we obtain tl/t2 z ii, 
i.e., the time required for heat transfer in a particle is many times shorter than the time 
necessary for ~eat to be removed from the surface of theiparticie. The value of the ratio 
tl/t 2 for other systems, studied in this work, but not having wave solutions, is also greater 
than unity. There is no basis for studying forms of heat transfer in a particle other than 
heat conduction, since the known circulation of mass in liquid and gaseous particles is 
caused by the motion of the particles [16], which is absent in this formulation. If, however, 
they do exist, they will merely reduce the time for equalizing the temperature over the 

volume of a particle. 

The stability of waves solutions in a dispersed medium must be studied separately. 
This analysis must be performed (unlike [7-10]) based on an investigation of nonstationary 
differential equations. 
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